According to the Digital Service Cloud, Cisco forecasts that the number of connected devices worldwide (that is, the Internet of Things, or IoT) will double from 25 billion in 2015 to 50 billion in 2020. IDC claims the global IoT market will grow from $1.9 trillion in 2013 to $7.1 trillion by 2020.
Though not the only factor, a group of academic researchers first made the connection between semantic technologies and IoT a couple of years back [1]. IoT devices are quite diverse and measure different parameters and with different conventions and units of measure. Though competing proprietary protocols keep getting proposed, it is likely that open source standards will be one of the ways to get this data to interoperate.
According to the authors, “providing interoperability among the ‘Things’ on the IoT is one of the most fundamental requirements to support object addressing, tracking, and discovery as well as information representation, storage, and exchange.” They also said that “applying semantic technologies to IoT promotes interoperability among IoT resources, information models, data providers and consumers, and facilitates effective data access and integration, resource discovery, semantic reasoning, and knowledge extraction.”
Yet the authors caution that the use of semantic technologies alone will not be sufficient to guarantee interoperability. They note the importance for stakeholders to agree upon shared ontologies and descriptions of the ‘things’ (entities) and their access services in the IoT. Open standards matched with consensus ontologies and vocabularies are both required.
I could not agree more that the open standards of semantic technologies, which are already designed for interoperability, will be one of the keys to combining results across multiple devices. This belief is one of the reasons behind Structured Dynamics‘ recent work with the Attributes Ontology of UMBEL [2], which we see as another one of the key enablers for IoT.